
PAPERS
XXIII Valcamonica Symposium 2009

52

Absolute  DAting  of  Rock ARt  on  flAt  MARble suRfAces 

Paolo Emilio Bagnoli*

* Paolo Emilio Bagnoli
Department of Information Engineering, University of Pisa, via Caruso 16, 56100 Pisa, Italy
Phone: +39 050 2217511, Fax: +39 050 2217522, Email: p.bagnoli@iet.unipi.it

ABSTRACT
The present paper deals with the computer-aided simulation of the erosion processes on a flat marble limestone surfa-
ce with ancient rock engravings. The main goal is to demonstrate that the engravings are still visible after a long time 
exposure to natural erosion. The mathematical technique used is the so-called Montecarlo method which consists of the 
study of the macroscopic properties of a granular system starting from the continuous repetition of microscopic stocha-
stic events whose probability laws is supposed to be known. These laws were related to the speeds of the various erosion 
mechanisms for limestone. By using the above described procedure, it was possible to observe the time evolution of the 
cross-section of the engravings in a time range spanning about 2000 years and to evaluate the trend behaviours of both 
depth and width of the small moat. From the analysis of these trends, a method for absolute dating of the engravings was 
obtained. In the last part of the present paper, the results of the first experimental application of the present method on 
the so-called “Billhook Step” (Mount Gabberi, Camaiore, Lucca) are exposed and discussed.

RIASSUNTO
Il presente articolo tratta della simulazione al computer dei processi di erosione di una superficie orizzontale di marmo car-
bonatico su cui sono presenti delle incisioni. Lo scopo è quello di dimostrare che i segni incisi nella roccia sono osservabili 
anche dopo un lungo tempo di erosione. La tecnica matematica usata è il cosiddetto metodo Montecarlo. Esso consiste nella 
ripetizione di un gran numero di eventi completamente casuali, di cui si suppone nota la legge di probabilità in funzione 
delle velocità dei vari processi erosivi, corrispondenti al distacco di piccole quantità elementari di materia ed in relazione al 
numero dei legami di connessione con il substrato roccioso. Questo procedimento consente di osservare nel tempo l’evolu-
zione della sezione di solchi incisi effettuati fino a 2000 anni fa e di misurare i parametri matematici che regolano l’evoluzio-
ne della larghezza e della profondità del solco. Dai rapporti che legano tali parametri e dalla conoscenza dei valori odierni 
delle due dimensioni, è stato possibile ottenere una formula per calcolare il tempo intercorso dall’esecuzione dell’incisione 
e quindi una datazione assoluta. Infine vengono riportati e discussi i primi risultati di misure sperimentali effettuate sul 
campo sul sito denominato Ripiano dei Pennati sul versante occidentale del Monte Gabberi (Camaiore, Lucca).

RESUME
Cet article traite de la simulation à l’ordinateur des processus d’érosion sur une surface plane calcaire en marbre avec des anciennes 
gravures rupestres. Le but principal est de montrer que les gravures sont encore visibles après une longue exposition à l’érosion natu-
relle. La technique mathématique utilisée est ladite méthode Monte-Carlo qui consiste en l’étude des propriétés macroscopiques du sy-
stème granulaire à commencer par la répétition continue des événements microscopiques stochastiques desquels on pense connaître les 
lois de probabilité. Ces lois sont en relation avec les vitesses des différents mécanismes d’érosion du calcaire. En utilisant la procédure 
ici décrite, il était possible d’observer l’évolution temporelle des échantillons de gravures dans un laps de temps de 2000 ans et d’évaluer 
les tendances évolutives de la profondeur et de la largeur du  petit fossé. A partir de l’analyse de ces tendances, on a obtenu une méthode 
pour la datation absolue des gravures. Dans la partie finale de cet article, les résultats de la première application expérimentale de cette 
méthode sur ledit « Ripiano dei Pennati» (Mont Gabberi, Camiore, Lucca), sont exposés et traités.
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intRoDution

In a previous work [Bagnoli, P.E., Panicucci, N., Viegi, M., 2005], presented at the Conference 
Ante et Post Lunam II focused on the archaeology of the Apuane Alps and organized by the Apua-
nian National Park, the main characteristics of the figurative rock art within the mountains were 
exposed and discussed. These rock art sites show the figures of billhooks (Italian “pennato” or “ron-
cola”), the curved hand-blades of the wood cutters, as the most occurring subject, mainly localized 
on horizontal flat marble surfaces at high and overlooking positions.

In the same work it was clearly exposed how the chronology of these figures, which are realized 
in contour line only, in real scale and showing an extreme degree of consumption, is extremely dif-
ficult because of the lack of comparisons with other sites elsewhere in Italy, except for two billhooks 
representations in the southern part of Trentino ( Riva del Garda and Arco).

In the local literature different and opposite hypotheses can be found concerning the interpreta-
tion and the chronology of these figures: from the Celtic-Etruscan age, the Roman period, related to 
the Silvanus god cult [Citton, G., Pastorelli, I., 1995], [Citton, G., Pastorelli, I., 2001], [Sani G., 2006], to 
the generic relationship with a “sheepers” culture [Guidi O., 1992], until the assigning to the modern 
age since some people retain that ancient figures cannot be preserved for a long time on limestone.

The present research started just from the above chronological problem: from the analysis of the 
stone erosion processes on the limestone of the Apuane Alps and of the evolution in time of the 
cross-section of an engraved sign, it tries to add further objective data to the discussion about the 
origin and the meaning of these artefacts.

The time evolution of an engraved small moat was studied with the help of computer simulations 
using the so-called Montecarlo method. This mathematical simulation technique allows obtaining 
information on the macroscopic characteristics of a granular system (i.e. composed by a very large 
number of microscopic elements) starting from the continuous repetition of stochastic events at 
microscopic scale, as for instance the removal of small marble particles, whose probability laws are 
supposed to be known.

Using the above described method, which needs as input data the average erosion speeds due to 
the natural physical-chemical erosion processes of the marble (in particular the freeze-thaw cycles 
and the chemical dissolution of calcium-carbonate into soluble calcium-bicarbonate) and overall of 
the average annual rain fall, it was possible to obtain the time evolution of an engraved small moat 
profile in the range 0 – 2000 years and therefore to accurately characterize the trend mathematical 
behaviours with which the two main dimensions of the moat, width and depth, change in time.

As it will be shown later, from the knowledge of the trend laws and using accurate experimental 
measurements of the modern values of the sign dimensions, it was possible to built an algorithm 
able to yield the time elapsed from the sign execution and therefore an absolute dating for the rock 
art. In the followings the simulation procedure is explained in all the details and the results of a first 
application of the present method on one of the most important Apuanian rock art site, the “Billho-
ok step” (Il “Ripiano dei Pennati”, mount Gabberi, Camaiore, western side of the Apuane Alps), is 
extensively exposed and discussed.

the siMulAtion pRoceDuRe 
The marble block, to which the simulation procedure was applied and whose structure is de-

picted in Figure 1, is composed by a regular net of elementary cubic cells representing the smallest 
material clusters subjected to erosion. Since the lateral dimensions (Lx, Ly=15 cm) of the block can 
be arbitrarily chosen, the single cell size depends upon the number of cells (nx, ny, nz ) along the x, y 
and z directions. The horizontal top surface of the block is exposed to the upper environment, while 
the bottom one must be considered as unlimited. On the lateral sides along the x and y directions 
cylindrical-like boundary conditions exist. It means that, being xi, yi and zi the coordinates of the 
centres, the cells placed on the lateral faces having xi=1 or xi=nx may be considered in contact with 
those on the opposite face and having the x coordinates xi=nx or xi=1 respectively. On the top surfa-
ce of the block a parabolic-shaped linear small moat was engraved along the y direction in the centre 
of the x side. This particular geometry chosen, together with the cylindrical boundary conditions in 
the y direction and since the erosion mechanisms may be retained as uniform along y, allow us to 
decrease as much as possible the number of cells in the y direction in order to minimize the calcula-
tion time needed for the simulation procedure (nx=1000; ny=5).
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In a regular cubic network each cells is directly bound to 26 surrounding cells, including those in 
the diagonal directions. If a cell has all the 26 surrounding boundaries occupied, it means that this 
cell is located within the bulk of the material. If some of the boundary cells lack, it implies that the 
given cell is located close to the top surface.

The above defined solid may be described, from the mathematical point of view, by a couple 
of three-dimensional matrices in which the three indices ix , iy and iz of the elements indicate the 
position of the cells in the three-dimensional space. In the first binary matrix, named AL (alive), the 
elements assume the values true, if the corresponding cell is still connected to the solid, or false if it 
has been previously eroded away. The second integer matrix, named FB (free boundaries) contains 
the number of unbounded boundaries for each cell.

The simulation of the marble erosion process as a function of time was carried out under the as-
sumption of the following hypotheses. A) The original top surface of the rock is perfectly horizontal. 
B) Only the two above cited erosion mechanisms were taken into account. This implies that any 
other source of rock deformation, such as mechanical abrasions due to ice motion, is excluded. C) 
The intensity of the erosion mechanisms is uniform along the whole top surface of the sample block. 

The simulation procedure is divided into 2000 time steps: the duration of one step was conven-
tionally set to one year. Furthermore within a single time step the two erosion processes, simulta-
neously occurring in the reality, were applied in sequence: the first one is due to the freeze-thaw 
cycles while the second one is due to the chemical dissolution of calcium carbonate. The sequential 
application of the two processes instead of simultaneous can be a reasonable approximation and 
implies a great simplification of the simulation procedure. 

The simulation of the surface erosion was implemented using the following method. Two proba-
bility distributions Pa(FB) and Pb(FB) were defined as a function of the number of the free bounda-
ries of the cells and for the two erosion processes respectively. Both the functions Pa and Pb, which 
are increasing with the FB values, must be chosen with the following properties:

P(FB) = 0   for FB = 0
0< P(FB)< 1      for  0 < FB <26        (1)
P(FB) =1   for FB = 26

In a single time step, for each ‘alive’ cell close to the top surface, i.e. having the corresponding 
AL(ix,iy,iz) value true and the FB(ix,iy,iz) value greater than zero, the computer generates a random 
number S in the range 0-1 using a uniform stochastic distribution. The removal or not of the cell is 
ruled by the following conditions:

( )[ ] ( ), , , , 0S P FB ix iy iz AL ix iy iz≤ → =         (2)
( )[ ] ( ), , , , 1S P FB ix iy iz AL ix iy iz> → =

After that the erosion in the single time step is completed, both the matrices AL and FB are upda-
ted. The probability function Pa for the freeze-thaw erosion process was defined as follows:

( )( ) 26Pa FB FB a= ;    0 a< < ∞ ;         (3)

where the exponent a decides the concavity of the curve: upward if a >1 and downward if a<1. 
Figure 2a shows the probability distribution Pa as a function of the number of free boundaries FB 
and for several values of the exponent a. Note that this parameter is directly related to the average 
erosion rate Va’ (measured in cell/step), so that the amount of the eroded material in a single time 
step can be finely modulated by changing the parameter a   in the probability function. The depen-
dence of the erosion speed on the exponent is shown in the Figure 2b. This curve was calculated 
from many simulation tests performed on a small size flat marble block using only the Pa function 
with several values of its exponent.

The shape of the second probability function Pb for the calcium-carbonate dissolution process 
was defined starting from the inverse of the well-known Fermi-Dirac function, ruling the energy 
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electron probability occupation in a semiconductor crystal. Pb can be calculated from the following 
function normalized at FB=0 and FB=26 in order to exactly satisfy the rules defined in equation (1):

              (4)

        
The above function has two different parameters: b and FBo. The first one (b) rules the shape of 

the curve from a sharp vertical step (for β → ∞ ) to a line (for 0β → ). The second parameter FBo 
can be defined as the number of free boundaries for which f(FBo)=0.5. The so-built Pb function is 
shown in Figure 2c as a function of the free boundaries FB, for b = 12 and for several values of the 
parameter FBo. Also in this case, the average erosion speed due to the calcium-carbonate dissolution 
process Vb’ (measured in cells/step) is directly related to the shape of the Pb curve and in particular 
to the FBo value, as can be seen from the plots of Figure 2d. Here the parameter FBo is plotted as a 
function of the erosion speed Vb’ (cells/step) for several values of the parameter b. Similarly these 
curves were calculated by performing several simulation tests on a small size flat marble block and 
using only the Pb distribution.

The parameters characterizing the two probability distribution functions, a for Pa and FBo for Pb, 
were chosen accordingly to the values of the average erosion speeds Va and Vb (measured in mm/
year) found in literature for environmental conditions similar to those in which the rock under study 
is located. The corresponding velocities Va’ and Vb’ measured in cells/step can be simply obtained 
from the following relationships:

( )' x xVa Va n L= ⋅  ;        ( )' x xVb Vb n L= ⋅          (5)

where the ratio Lx/nx is the lateral size of the cubic cells. The parameters of the two distribution 
functions were chosen from the plots of the Figures 2b and 2d respectively used as look-up tables.

Erosion speed correction factors 
In the above description of the simulation procedure, the hypothesis C of the uniform intensity 

of both the erosion mechanisms implies that the speeds, and hence the probability distributions, 
should be always the same for all the exposed cells. This assumption may be quite unrealistic in the 
small scale dimensions since local morphological factors may concur to change the erosion condi-
tions. Therefore in each time step the Va and Vb speeds – and consequently the parameters of the 
probability functions - must be changed using suitable correction functions depending on the depth 
of the cells within the engraved moat and on the local morphology of the exposed top surface.

In particular the erosion process due to freeze-thaw cycles may be considered as slightly more 
intense at the top surface of the engraved moat than at the bottom and the increase percentage must 
be referred to the original depth of the moat. This process may be described by a correction function 
Cza(iz) which depends only on the z spatial variable of the cells. Furthermore it must be emphasized 
that the borders of the moat are subjected to more intense freeze-thaw erosion that a flat surface. 
This second modification can be implemented by introducing a further correction function Cxa(ix) 
which depend only on the x spatial variable. However this implies that the program needs to reco-
gnize, after each simulation time step, the localization of the borders of the moat using a suitable 
numerical algorithm. Therefore for each cell the velocity Va, and consequently the Va’ speed and 
the parameter a of the probability function Pa, must be corrected using the following relationship.

( , , ) ( ) ( )x y z x zVa i i i Vao Cxa i Cza i= ⋅ ⋅ ,            (6)

where Vao is the standard value of the erosion speed. As an example, Figure 3a shows the cross 
section of the surface under simulation taken at a given time and the horizontal and vertical plots of 
the Cxa(ix) and Cza(iz) functions respectively. The maximum values for the two functions are open 
parameters of the simulation tests and in any case they do not exceed 20% of the standard value.

For the calcium-carbonate dissolution process, many works can be found in literature concerning 
theoretical and experimental studies of the erosion on limestone rock surfaces. In particular, the 
recently published study reported in the reference [Szunyogh 2005] deals with an accurate mathe-
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matical model for carbonate-based rocks dissolution, which takes into account many environmental 
parameters, as the annual rainfall and the slope of the rock surface with respect to the horizontal 
plane. According with the above model and assuming a vertical rainfall, the surface lowering W 
speed can be written in a compact form as follows: 

( ) [ ]cos( )a aW g Q u Q ϑ= ⋅ + ⋅          (7)

Qa is the annual precipitation, q  is the angle of the local slope of the surface with respect to the 
horizontal plane and the parameters g and b are defined by the following relationships:

( )eq rock d H a mmg k C t S N Mρ= ⋅ ⋅ ⋅ ⋅ ⋅
        (8)

d H au k t S N= ⋅ ⋅ ⋅            (9)

where k is the velocity constant of the chemical dissolution at 10 °C and in open-air carbon dioxi-
de content, Ceq is the equilibrium concentration of calcium carbonate, rrock is the density of stone, 
td is hours/day rainfall time and SH (3600 sec/hour), Na (365 days/year) and Mmm (1000 mm/m) 
are suitable constants applied to convert the parameter dimensions into those used in everyday 
practice. From equation (7) it can be clearly seen that the velocity W is a function of the local slope 
of the rock surface. Figure 3b shows the plots of the W speed versus the annual precipitation (assu-
ming td = 10 hours/day) for several values of the angle q, while in the Figure 3c the same plots are 
drawn normalized with respect to the curve with q =0°. On the basis of the above model it can be 
stated that the dissolution velocity on the sample under simulation, in each time step is a function of 
the local slope of the exposed surface. Therefore, notwithstanding that most of the original surface 
is nearly flat, the walls of the engraved moat undergo increased erosion with respect to the standard 
situation. Once that a suitable value for the annual precipitation has been set, at the end of each 
simulation time step the local slope can be calculated from the absolute value of the surface profile 
first derivative along the x axis. Of course, in order to eliminate the effects of the surface roughness 
on the derivative function, the surface profile is previously smoothed using a mobile averaging 
filtering procedure. These data, interpolated within the plots of the Figures 3b and 3c, allow us to 
calculate the horizontal correction function Cxb(ix) for the velocity Vb.

The corresponding vertical correction function Czb(iz) for the dissolution process may be built in 
a similar way than that for the freeze-thaw cycles but in this case, due to the accumulation of water, 
the standard value is located at the upper surface while at the bottom of the engraving the erosion 
velocity is higher. Therefore the local dissolution velocity Vb, can be similarly expressed by the fol-
lowing relationship:

( , , ) ( ) ( )x y z x zVb i i i Vbo Cxb i Czb i= ⋅ ⋅ .                   (10)
where Vbo is the standard value calculated for q =0°.

siMulAtion Results

The values of the rock dissolutions rates for the two erosion processes were deduced from the 
data found in literature. In particular reference [Buhmann D. & Dreybrodt W. 1985] reported the 
average erosion thickness due to a single freeze-thaw cycle for several types of rock material. For 
carbonate limestone the value is about 5.5 x 10-5 mm. Using this value and considering as a first ap-
proximation one cycle per day during four month per year, we obtain an average value of 0.010038 
mm/year for the erosion speed Va corresponding to a Va’ value equal to 0.0669 cells/year in the 
present simulation model (Lx=150 mm; nx=1000). 

As far as the chemical dissolution rate is concerned, we used the data reported in reference [Szun-
yogh 2005] for the involved physical parameters to calculate the equations (8) and (9). However, as 
shown in the equation (7), the most important input parameter needed by the simulation procedure 
is the average annual rain fall Qa. In the lack of accurate scientific data concerning the local evolu-
tion of this parameter back to 2000 years and coming from geological analyses, the annual rain fall 
was provisionally deduced from the historical data of up to eleven meteorological measurement 
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stations located around the central massif of the Apuane Alps and at various different altitudes. The 
time range spanned by the data was about 80 years. 

In the Figure 4 the Qa values for the various stations are plotted as a function of the altitude; the 
dashed line represents the linear regression of the data set. The value used as the most probable one 
for the rock art site under investigation was interpolated along the regression line and was 2150 
mm/year. Consequently the mean chemical dissolution velocity Vb for the horizontal condition (q 
=0°) was calculated from equation (7) as 0.0459 mm/year corresponding to Vb’=0.3066 cells/year.

Using the above input parameters, several simulation runs were performed on various models in 
which the initial depth (ho) and width (wo) of the engraved parabolic moat varied in the following 
ranges: ho=3 – 10 mm and wo=5 - 22.5 mm.

The Figure 5 shows in isometric scales the rock surface cross-sections along the x-direction of two 
sample models drawn every 100 years. The small dots indicate the borders of the trace as detected 
by the internal algorithm. As can be seen from this figure, the engraved signs are still observable 
after long time erosion notwithstanding the progressive widening of the width, the smoothing of the 
borders and the lowering of the top surface.

From the results of the performed simulations a general trend in the evolution of the engraved 
trace profile may be achieved as shown by the plots of Figure 6a and 6b. In order to smooth the stati-
stically induced roughness of the surface, in these figures each curve was obtained by averaging the 
plots of ten different simulations with the same parameters. 

As can be clearly seen, the depth tends to slowly increase in time with a linear behaviour and the 
increasing speed (K1) was found to be independent on the original depth ho. On the contrary the 
width evolves linearly with the square root of time, except in the initial range, and the slope (K2) and 
the intercept (wo’) are increasing functions of the original depth ho. This behaviours can be practi-
cally described as a function of time t by means of the following set of equations:

1oh h K t= + ⋅       ;      2'ow w K t= + ⋅                  (11a)

2 oK a b h= + ⋅      ;     'o ow c d h= + ⋅                 (11b)

where the parameters a, b, c and d are constants which can be calculated from the plots of equa-
tions (11b) as a function of the initial depth ho and shown in the Figure 6c. By replacing the square 
root of time with the variable x = t1/2 and knowing the today values of the engraving width w and 
depth h, the elapsed time from the engraving execution can be obtained from the positive real root 
of the following third order equation:

3 2

1 1
0d a b h w c d hx x x

b b K b K
+ ⋅ − − ⋅

+ − + =
⋅ ⋅                                 (12)

As a first application test of the above described algorithm, a self-dating procedure was applied 
to the two simulation curves shown in the Figure 5. For every time step (year) the obtained values 
for the height h and the width w were used as input data in the equation (12), while the trend para-
meters a, b, c and d were calculated from the averaging of several simulation tests performed using 
the same ho and wo parameters and the same average annual rain fall Qa. The output value of the 
elapsed time was compared with the initial available value.

The Figure 7 shows the results of this procedure. Here the relative error percentage between the 
true elapsed time and the back calculated one using the dating algorithm was plotted as a function 
of time. As can be seen, the dating algorithm is able to estimate the antiquity of the engraving with a 
relative error in the range of 10-20%, at least under the above described conditions and overall using 
a single couple of data for h and w. This first result is quite encouraging for the rupestrian archaeo-
logy which mostly uses cultural and typological considerations for the chronological analyses.

However it must be pointed out that the curves of the Figure 7 are affected by a random error 
only, having zero mean value and caused by the granular nature of the phenomenon and which is 
responsible of the differences of the real deformation curves from the corresponding average trend 
behaviours. In order to increase the accuracy of the evaluation, at least from the random error point 
of view, we must apply the algorithm to several experimental measurement on the same sample (i.e. 
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several couples of h and w taken on the same engraved figure) and averaging the output values.
The second source of error, which does not affect the plots of the Figure 7, is the “systematic” one 

induced by an inaccurate evaluation of the main parameters ruling the erosion speed (as for instance 
the average annual rain fall) and causing always the same error on all the output data.

expeRiMent

The above described method was applied to the rock art site called the “Billhooks Step” (Italian 
“Ripiano dei Pennati”) on the western side of the Mount Gabberi (Camaiore, Lucca). This flat rock, 
located at an altitude of 960 meter above the sea level, on the top of a sharp cliff overlooking the 
sea coast, is one of the sites described in the reference [Bagnoli, P.E., Panicucci, N., Viegi, M., 2005] 
having such properties for which a high chronology may be assigned, following the criteria exposed 
in the same reference.

The complete map of the engraved rock is shown in the Figure 8. Here there are several figures 
of billhooks engraved around a small tub and three crosses, two having a Greek shape (four arms 
with the same length) and one belonging to the Latin type. The in situ experimental activity, which 
consisted of the measurements of several engraved profiles on some figures, were carried out by the 
author with the precious help of some volunteers belonging to the Archaeological and Speleologi-
cal Group of Pietrasanta (GASP) and to the UOEI association of Pietrasanta who also provided the 
security equipments.

The dating method was applied to a set of engraved figures composed by five billhooks (P1-P5) 
and the three crosses (C1-C3); in the Figure 8 the chosen artefacts are traced in black lines and mar-
ked with the corresponding label.

The cross-sections of the engraved figures were captured using a mechanical profiler made of pa-
rallel steel needles with a diameter of 1 millimetre and photographed using a high resolution digital 
camera with a grid paper on the background (see Figure 9). The digital image was then uploaded 
within a vectorial graphical program, such as AutoCad, in order to easily measure both the height 
and the width with an estimated resolution of less than 100 microns.

For each figure under test, up to ten different profiles were taken just for averaging the data.
The obtained results are shown in the Table I in numerical form and also in the Figure 10 in the 

graphical one for an easier reading.
In the Table I the first columns indicate the elapsed time from the engraving execution obtained 

as the mean value of the ten different measurements; the second columns contain the standard 
deviations of the data while in the third columns the corresponding absolute date calculated with 
respect to the year of the measurement execution (2006).

In order to clearly demonstrate the sensitivity of the output results on the annual rain fall, in both 
the Table I and the Figure 10 the output data obtained for two other different Qa values (1750 mm/
year and 2450 mm/year) are also reported for comparison with those calculated using the most pro-
bable value (2150 mm/year) for Qa.

From a careful analysis of the obtained results some important details must be particularly noted. 
At first and as it was expected, the dates are progressively more recent with the increasing of the 
average annual rain fall value just because the higher speed of the chemical dissolution which, at 
least at the altitude considered, is largely predominant with respect of the effects of the freeze-thaw 
cycles mechanism. The second property that must be noted is the substantial uniformity of dates 
within the two separate groups of signs. The chronologies were collected around the 1000 a.C. for 
the billhooks and about three centuries later for the crosses, at least for the annual rain fall of 2150 
mm/year, therefore clearly indicating the medieval origin of the artefacts.

However the dates concentration for the two groups does not necessarily imply that the signs 
were engraved in the same time because of the uncertainty of the single date values (shown by the 
vertical segment in each point of the Figure 10) and corresponding to about a century. This appro-
ximation is practically the amount of the random error caused by the joined effect of the granular 
stochastic erosive phenomena and of the differences in the shape of the moat in the various cross-
sections of the engraving.

Finally it must be well noted the strong difference of dates between the group of the billhooks 
and the crosses, also neglecting the data related to 1750 mm/year annual rain fall in which it is very 
high. This difference, being well higher than the uncertainty due to the random error, seems to be 
due just to an historical or cultural reason rather than to a numerical one.
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conclusions

In the present work, a method for absolute dating of rock art based on mathematical simulations 
and careful in situ experimental measurement has been proposed and presented. Beside the uncer-
tainty of the input data required by the mathematical analysis, we believe that the exposed method 
is very promising for obtaining reliable absolute dates for rock art, at least and at present under the 
above described conditions which are limestone rocks, horizontal flat surfaces, open air exposure 
and figures traced in contour.

Note that, at least to our knowledge, the present proposal is the first example of rock art absolute 
dating using a specific technique for these artefacts. Other attempts reported in literature [Bedna-
rick, R. G. 1979] [Dewdney, S. 1970] are generally based on reliable and well tested methods, as 
radiocarbon dating for the pigments of the paintings, radioactive isotopes or rock surface natural co-
ating analysis, which were specially designed for other types of archaeological situations and whose 
results, in the case of rock art, may be easily polluted by materials coming from the rock substrate 
and hence may be largely unreliable.

The reported first experimental application of the dating method yielded results which are com-
pletely in agreement with our previous attempt of cultural interpretation of the rock art site [Bagno-
li, P.E., Panicucci, N., Viegi, M., 2005], both from the chronological point of view between the Early 
Middle Age and the beginning of Middle Age and also from the point of view of the later dating of 
the crosses with respect to the billhooks, which strongly suggest the “Christianizing“ procedure of 
pagan rocks used, or retained to be used, by pagan people for their rituals. This procedure typically 
occurred just in the first centuries of the Middle Age.

Beside we have well in mind that the data obtained for the Billhook Step may be still affected by 
a systematic error due to the uncertainties concerning some input parameters as the average annual 
rain fall, however we believe that the obtained chronological analysis of the engravings is substan-
tially consistent and useful to demonstrate the validity of the proposed dating method. This implies 
that those interpretations of the billhooks locating them on one hand in the modern age (XIX centu-
ry) and in the Etruscan or Roman period on the other one, including the ritual connection with the 
Silvanus god, can be discarded as completely wrong. 

Further research developments concerning the present dating method proposal may involve sui-
table validation activities, i.e. the application on other rock art sites whose chronology may be obtai-
ned with certainty by an alternative method. Other future improvement of the method may include 
a refinement of the annual rain fall data by investigating the results of geological researches in the 
Apuane Alps, a modification of the simulation procedure in order to include in any way also the 
long-time fluctuations of the annual rain fall and the possible use of more sophisticated techniques 
for measuring the engraved profile such as laser interferometry.
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FIG. 1: View of the solid used for the simulations and its coordi-
nate system.

FIG. 2: a) Plots of the Pa probability functions vs. the number of free 
boundaries FB and for several a α▒Ävalues. b) Freeze-thaw erosion speed 
vs. the a exponent. c) Plots of the Pb probability functions vs. the 
number of free boundaries FB and for several FBo values. d) Chemi-
cal erosion speed curves vs. FBo parameter.

FIG. 3: a) Horizontal and vertical correction functions Cxa and 
Cza for the freeze-thaw erosion mechanism. b) Absolute and c) 
normalized chemical dissolution speed as functions of the annual 
rain fall for several values of the surface angle with respect to the 
horizontal plane.

FIG. 4: Annual rain fall data from the measurement stations of 
the Apuane Alps as a function of the altitude.

FIG. 5: Two simulations of the evolution of engraving profiles 
plotted in isometric scales and every 100 years.

FIG. 6: Plots of the engraving depth (a) and width (b) vs. time 
and square root of time for three values of the initial depth ho. c) 
Fitting plots for the calculations of the parameters a, b, c and d 
in the equations (11b).
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FIG. 7: Error percentage between the estimated time and the real 
one applied to the simulation results shown in the Figure 5.

FIG. 8: Map of the engravings on the Billhooks Step (mount Gab-
beri, Camaiore). The figure used for the dating experiment are 
drawn in black and labelled.

FIG. 9 : High resolution digital photograph used for the expe-
rimental measurement of the depth and width of an engraved 
figure.

FIG. 10 : Plot of the chronologies of the eight figures for three 
different values of the average annual rain fall. The standard de-
viation for each date is also indicated by the vertical segments.

Table I : Numerical data for the chronologies of the eight figures for three different values of the average annual rain fall.


